Chapter 6. Control Charts for Variables

Figure 5-1 The need for controlling both process mean and process variability. (a) Mean and standard deviation at nominal levels. (b) Process mean $\mu_1 > \mu_0$. (c) Process standard deviation $\sigma_1 > \sigma_0$.

Control Charts for \overline{x} and R

x: quantity of interest $x \sim N(\mu, \sigma)$

$$x \sim N(\mu, \sigma)$$

 x_1, x_2, \dots, x_n : samples of x

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\overline{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

$$\mu + Z_{\alpha f2}\sigma_{\overline{x}} = \mu + Z_{\alpha f2}\frac{\sigma}{\sqrt{n}}$$
 and $\mu - Z_{\alpha f2}\sigma_{\overline{x}} = \mu - Z_{\alpha f2}\frac{\sigma}{\sqrt{n}}$ (5-1)

Subgroup Data with Unknown μ and σ

 $\overline{\overline{x}}$: grand average of x, best estimate for μ

$$\overline{x} = \frac{\overline{x}_1 + \overline{x}_2 + \dots + \overline{x}_m}{m} \tag{5-2}$$

$$R = x_{\text{max}} - x_{\text{min}}$$

 $R_1, R_2 \dots, R_m$: ranges of m samples

$$\overline{R} = \frac{R_1 + R_2 + \dots + R_m}{m} \tag{5-3}$$

Control Limits for the \bar{x} Chart

$$UCL = \overline{x} + A_2 \overline{R}$$

$$Center line = \overline{x}$$

$$LCL = \overline{x} - A_2 \overline{R}$$
(5-4)

The constant A_2 is tabulated for various sample sizes in Appendix Table VI.

Control Limits for the R Chart

$$UCL = D_4 \overline{R}$$

$$Center line = \overline{R}$$

$$LCL = D_3 \overline{R}$$
(5-5)

The constants D_3 and D_4 are tabulated for various values of n in Appendix Table VI.

Phase I Application of \overline{x} and R Charts

- Equations 5-4 and 5-5 are trial control limits.
 - Determined from *m* initial samples.
 - Typically 20-25 subgroups of size *n* between 3 and 5.
 - Any out-of-control points should be examined for assignable causes.
 - If assignable causes are found, discard points from calculations and revise the trial control limits.
 - Continue examination until all points plot in control.
 - Adopt resulting trial control limits for use.
 - If no assignable cause is found, there are two options.
 - 1. Eliminate point as if an assignable cause were found and revise limits.
 - 2. Retain point and consider limits appropriate for control.
 - If there are many out-of-control points they should be examined for patterns that may identify underlying process problems.

Example 5-1

Table 5-1 Flow Width Measurements (microns) for the Hard-Bake Process

G 1	Wafers									
Sample Number	1	2	3	4	5	\overline{x}_i	R_i			
1	1.3235	1.4128	1.6744	1.4573	1.6914	1.5119	0.3679			
2	1.4314	1.3592	1.6075	1.4666	1.6109	1.4951	0.2517			
3	1.4284	1.4871	1.4932	1.4324	1.5674	1.4817	0.1390			
4	1.5028	1.6352	1.3841	1.2831	1.5507	1.4712	0.3521			
5	1.5604	1.2735	1.5265	1.4363	1.6441	1.4882	0.3706			
6	1.5955	1.5451	1.3574	1.3281	1.4198	1.4492	0.2674			
7	1.6274	1.5064	1.8366	1.4177	1.5144	1.5805	0.4189			
8	1.4190	1.4303	1.6637	1.6067	1.5519	1.5343	0.2447			
9	1.3884	1.7277	1.5355	1.5176	1.3688	1.5076	0.3589			
10	1.4039	1.6697	1.5089	1.4627	1.5220	1.5134	0.2658			
11	1.4158	1.7667	1.4278	1.5928	1.4181	1.5242	0.3509			
12	1.5821	1.3355	1.5777	1.3908	1.7559	1.5284	0.4204			
13	1.2856	1.4106	1.4447	1.6398	1.1928	1.3947	0.4470			
14	1.4951	1.4036	1.5893	1.6458	1.4969	1.5261	0.2422			
15	1.3589	1.2863	1.5996	1.2497	1.5471	1.4083	0.3499			
16	1.5747	1.5301	1.5171	1.1839	1.8662	1.5344	0.6823			
17	1.3680	1.7269	1.3957	1.5014	1.4449	1.4874	0.3589			
18	1.4163	1.3864	1.3057	1.6210	1.5573	1.4573	0.3153			
19	1.5796	1.4185	1.6541	1.5116	1.7247	1.5777	0.3062			
20	1.7106	1.4412	1.2361	1.3820	1.7601	1.5060	0.5240			
21	1.4371	1.5051	1.3485	1.5670	1.4880	1.4691	0.2185			
22	1.4738	1.5936	1.6583	1.4973	1.4720	1.5390	0.1863			
23	1.5917	1.4333	1.5551	1.5295	1.6866	1.5592	0.2533			
24	1.6399	1.5243	1.5705	1.5563	1.5530	1.5688	0.1156			
25	1.5797	1.3663	1.6240	1.3732	1.6887	1.5264	0.3224			
					Σ	$\bar{x}_i = 37.6400$	$\Sigma R_i = 8.1302$			
						$\dot{x} = 1.5056$	R = 0.3252			

$$\overline{R} = \frac{\sum_{i=1}^{25} R_i}{25} = \frac{8.1302}{25} = 0.32521$$

LCL =
$$\overline{R}D_3 = 0.32521(0) = 0$$

UCL = $\overline{R}D_4 = 0.32521(2.114) = 0.68749$

$$\overline{\overline{x}} = \frac{\sum_{i=1}^{25} \overline{x}_i}{25} = \frac{37.6400}{25} = 1.5056$$

UCL =
$$\overline{x} + A_2 \overline{R} = 1.5056 + (0.577)(0.32521) = 1.69325$$

$$LCL = \overline{x} - A_2 \overline{R} = 1.5056 - (0.577)(0.32521) = 1.31795$$

Figure 5-2 \bar{x} and R charts (from Minitab) for flow width in the hard-bake process.

$$\hat{\sigma} = \frac{\overline{R}}{d_2} = \frac{0.32521}{2.326} = 0.1398$$
 microns

Assume spec tolerance is 1.5 +/- 0.5 micron. Nonconformance probability:

$$p = P\{x < 1.00\} + P\{x > 2.00\}$$

$$= \Phi\left(\frac{1.00 - 1.5056}{0.1398}\right) + 1 - \Phi\left(\frac{2.00 - 1.5056}{0.1398}\right)$$

$$= \Phi(-3.61660) + 1 - \Phi(3.53648)$$

$$\approx 0.00015 + 1 - 0.99980$$

$$\approx 0.00035$$

C_p : Process Capability Ratio (PCR)

$$C_p = \frac{\text{USL} - \text{LSL}}{6\sigma} \tag{5-11}$$

Note: 6σ spread is the basic definition of process capability. 3σ above mean and 3σ below.

If σ is unknown, we can use $\hat{\sigma} = \frac{\overline{R}}{d_2}$. $\hat{\sigma}$ in the example is 0.1398.

$$\hat{C}_p = \frac{2.00 - 1.00}{6(0.1398)} = \frac{1.00}{0.8388} = 1.192$$

$$P = \left(\frac{1}{C_p}\right) 100\%$$

P: % of specification band the process uses up. P can be estimated as:

$$\hat{P} = \left(\frac{1}{\hat{C}_p}\right) 100\% = \left(\frac{1}{1.192}\right) 100\% = 83.89$$

Figure 5-3 Process fallout and the process capability ratio C_p .

Revision of Control Limits and Center Lines

- Effective use of control charts requires periodic review and revision of control limits and center lines.
- Sometimes users replace the center line on the \overline{x} chart with a target value.
- When R chart is out of control, out-of-control points are often eliminated to re-compute a revised value of \overline{R} which is used to determine new limits and center line on R chart and new limits on \overline{x} chart.

Phase II Operation of Charts

- Use of control chart for monitoring future production, after a set of reliable limits are established, is called *phase II* of control chart usage (Figure 5-4).
- A run chart showing individuals observations in each sample, called a tolerance chart or tier diagram (Figure 5-5), may reveal patterns or unusual observations in the data.

 Table 5-2
 Additional Samples for Example 5-1

C	Wafers								
Sample Number	1	2	3	4	5	\bar{x}_i	R_i		
26	1.4483	1.5458	1.4538	1.4303	1.6206	1.4998	0.1903		
27	1.5435	1.6899	1.5830	1.3358	1.4187	1.5142	0.3541		
28	1.5175	1.3446	1.4723	1.6657	1.6661	1.5332	0.3215		
29	1.5454	1.0931	1.4072	1.5039	1.5264	1.4152	0.4523		
30	1.4418	1.5059	1.5124	1.4620	1.6263	1.5097	0.1845		
31	1.4301	1.2725	1.5945	1.5397	1.5252	1.4724	0.3220		
32	1.4981	1.4506	1.6174	1.5837	1.4962	1.5292	0.1668		
33	1.3009	1.5060	1.6231	1.5831	1.6454	1.5317	0.3445		
34	1.4132	1.4603	1.5808	1.7111	1.7313	1.5793	0.3181		
35	1.3817	1.3135	1.4953	1.4894	1.4596	1.4279	0.1818		
36	1.5765	1.7014	1.4026	1.2773	1.4541	1.4824	0.4241		
37	1.4936	1.4373	1.5139	1.4808	1.5293	1.4910	0.0920		
38	1.5729	1.6738	1.5048	1.5651	1.7473	1.6128	0.2425		
39	1.8089	1.5513	1.8250	1.4389	1.6558	1.6560	0.3861		
40	1.6236	1.5393	1.6738	1.8698	1.5036	1.6420	0.3662		
41	1.4120	1.7931	1.7345	1.6391	1.7791	1.6716	0.3811		
42	1.7372	1.5663	1.4910	1.7809	1.5504	1.6252	0.2899		
43	1.5971	1.7394	1.6832	1.6677	1.7974	1.6970	0.2003		
44	1.4295	1.6536	1.9134	1.7272	1.4370	1.6321	0.4839		
45	1.6217	1.8220	1.7915	1.6744	1.9404	1.7700	0.3187		

Figure 5-4 Continuation of the \bar{x} and R charts in Example 5-1.

Figure 5-5 Tier chart constructed using the Minitab box plot procedure for the flow width data.

Control vs. Specification Limits

- Control limits are derived from natural process variability, or the natural tolerance limits of a process.
- Specification limits are determined externally, for example by customers or designers.
- There is no mathematical or statistical relationship between the control limits and the specification limits.

Figure 5-6 Relationship of natural tolerance limits, control limits, and specification limits.

Rational Subgroups

- \overline{x} charts monitor between-sample variability.
- R charts measure within-sample variability.
- Standard deviation estimate of σ used to construct control limits is calculated from within-sample variability.

• It is not correct to estimate σ using $s = \sqrt{\frac{\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}\left(x_{ij} - \overline{x}\right)^{2}}{\sum\limits_{m=1}^{m}\sum\limits_{1}^{n}\left(x_{ij} - \overline{x}\right)^{2}}}$

$$s = \sqrt{\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \left(x_{ij} - \overline{x}\right)^{2}}{mn - 1}}$$

Guidelines for Control Chart Design

- Control chart design requires specification of sample size, control limit width, and sampling frequency.
 - Exact solution requires detailed information on statistical characteristics as well as economic factors.
 - The problem of choosing sample size and sampling frequency is one of allocating sampling effort.
- For \overline{x} chart, choose as small a sample size consistent with magnitude of process shift one is trying to detect. For moderate to large shifts, relatively small samples are effective. For small shifts, larger samples are needed.
- For small samples, R chart is relatively insensitive to changes in process standard deviation. For larger samples (n > 10 or 12), s or s² charts are better choices.
- NOTE: Skip Section on Changing Sample Size (pages 209-212)

Charts Based on Standard Values

$$UCL = \mu + 3 \frac{\sigma}{\sqrt{n}}$$

$$Center line = \mu$$

$$LCL = \mu - 3 \frac{\sigma}{\sqrt{n}}$$
(5-14)

$$UCL = \mu + A\sigma$$

$$Center line = \mu$$

$$LCL = \mu - A\sigma$$
(5-15)

$$UCL = D_2 \sigma$$

$$Center line = d_2 \sigma$$

$$LCL = D_1 \sigma$$
(5-17)

$$D_1 = d_2 - 3d_3 D_2 = d_2 + 3d_3$$

 d_2 : mean of distribution of relative range

 d_3 : standard deviation of distribution of relative range

Interpretation of \overline{x} and R Charts

Figure 5-8 Cycles on a control chart.

Figure 5-11 A trend in process level.

Figure 5-10 A shift in process level.

Figure 5-12 A stratification pattern.